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Abstract
The observation that the existence of the amazing reality and discreteness
of the spectrum need not necessarily be attributed to the Hermiticity of the
Hamiltonian is re-emphasized in the context of the non-Hermitian Dirac and
Klein–Gordon Hamiltonians. Complex Coulombic potentials are considered.

PACS number: 03.65.−w

1. Introduction

In one of the first explicit studies of the non-Hermitian Schrödinger Hamiltonians, Caliceti
et al [1] considered the imaginary cubic oscillator problem in the context of perturbation
theory. They offered the first rigorous explanation why the spectrum in such a model may be
real and discrete. Only many years later, after being quoted as just a mathematical curiosity [2]
in the literature, the possible physical relevance of this result re-emerged and was emphasized
[3]. Initiating, thereafter, an extensive discussion resulted in the proposal of the so-called
PT -symmetric quantum mechanics by Bender and Boettcher [4].

The spiritual wisdom of the new formalism lies in the observation that the existence of
the real spectrum need not necessarily be attributed to the Hermiticity of the Hamiltonian.
This observation has offered a sufficiently strong motivation for the continued interest in
the complex, non-Hermitian, cubic model which may be understood as a characteristic
representation of a very broad class of the so-called pseudo-Hermitian models with real
spectra.

In such non-Hermitian settings, new intensive studies employed, for example, the idea
of the strong coupling expansion [5], the complex WKB [6], Hill determinants and Fourier
transformation [7], functional analysis [8], variational and truncation techniques [9], linear
programming [10], pseudo-perturbation technique [11, 12], etc (cf [13–15]). However, such
studies remain in the context of the Schrödinger Hamiltonian and need to be complemented
by the non-Hermitian setting of Dirac and Klein–Gordon Hamiltonians. Let us start, say, with
our forthcoming oversimplified generalized complex Coulombic examples.
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2. Generalized complex Coulombic fields in Dirac equation

A priori, a generalized Dirac–Coulomb equation for a mixed potential consists of a Lorentz-
scalar Coulomb-like potential and a Lorentz-vector Coulomb potential. Whilst the former is
added to the mass term of the Dirac equation, the minimal coupling is used, as usual, for the
latter. The ordinary (Hermitian) Dirac Hamiltonian is exactly solvable in this case (cf, e.g.,
[16, 17]). In fact the exact solution to the Dirac equation for an electron in a Coulomb field
was first obtained by Darwin [18] and Gordon [19].

The key idea is that instead of solving the Dirac–Coulomb equation directly, one can
solve the second-order Dirac equation [16–22] which is obtained by multiplying the original
equation, from the left, by a differential operator. The second-order equation is similar to
the Klein–Gordon equation in a Coulomb field. The latter reduces to a form nearly identical
to that of the Schrödinger equation and its solution can thus be inferred from the known
non-relativistic solution.

In what follows, we recycle the modified similarity transformation (used by Mustafa and
Barakat [17]) and obtain exact solutions for the non-Hermitian generalized Dirac and Klein–
Gordon Coulomb Hamiltonians. Although this problem might be seen as oversimplified,
it offers a benchmark for the yet to be adequately explored non-Hermitian relativistic
Hamiltonians.

For a mixed scalar and electrostatic complex Coulombic potentials, i.e. m → m − iA2/r

and V (r) = −iA1/r , the Dirac Hamiltonian reads (with the units h̄ = c = 1)

H = �α · �p + β(m − iA2/r) − iA1/r (1)

where the Dirac matrices �α and β have their usual meanings. With the similarity transformation

S = a + ibβ �α · r̂ S−1 = a − ibβ �α · r̂

a2 − b2
(2)

applied to the Dirac equation, one gets

H ′� ′ = E� ′ H ′ = SHS−1 � ′ = S� (3)

where r̂ is the unit vector �r/r and a and b are constants to be determined below. For the above
central problem, the transformed wavefunction is given by

� ′ =
[

iR(r)�l
jm

Q(r)�σ · r̂�l
jm

]
. (4)

In a straightforward manner one obtains, through E� ′ = SHS−1� ′, two coupled equations
for R(r) (the upper component) and Q(r) (the lower component):[

∂r +
1

r
+

K

r
cosh θ +

iA1

r
sinh θ + E sinh θ

]
R(r) = ξ1(r)Q(r) (5)

[
∂r +

1

r
− K

r
cosh θ − iA1

r
sinh θ − E sinh θ

]
Q(r) = ξ2(r)R(r) (6)

with

ξ1(r) = m − iA2

r
+

iA1

r
cosh θ +

K

r
sinh θ + E cosh θ (7)

ξ2(r) = m − iA2

r
− iA1

r
cosh θ − K

r
sinh θ − E cosh θ (8)
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where K = ω̃(j + 1/2), ω̃ = ∓1 for l = j + ω̃/2, cosh θ = (a2 + b2)/(a2 − b2) and
sinh θ = 2ab/(a2 − b2).

Incorporating the regular asymptotic behaviour of the radial functions near the origin, i.e.
R(r) → a1r

γ−1 and Q(r) → a2r
γ−1 as r → 0, and neglecting all constant terms proportional

to mass and energy, one obtains

γ =
√

K2 + A2
1 − A2

2. (9)

The negative sign of the square root has to be discarded to avoid divergence of the
wavefunctions at the origin.

It is obvious that one has the freedom to proceed either with the upper radial component
R(r) or with the lower componentQ(r). We shall, hereinafter, work with the upper component
and determine sinh θ and cosh θ (hence the constants a and b) by requiring

−iA2 + iA1 cosh θ + K sinh θ = 0 (10)

K cosh θ + iA1 sinh θ = ω̃γ . (11)

This requirement yields

sinh θ = −iω̃
[A1γ − |K|A2][

K2 + A2
1

] cosh θ = [|K|γ + A1A2][
K2 + A2

1

] . (12)

Equations (5) and (6) would, as a result, imply

[E2 − m2]R(r) =
[
−∂2

r − 2

r
∂r +

(γ 2 + ω̃γ )

r2
− 2i(mA2 + A1E)

r

]
R(r). (13)

With the substitution R(r) = r−1U(r), it reads

[E2 − m2]U(r) =
[
−∂2

r +
(γ 2 + ω̃γ )

r2
− 2i(mA2 + A1E)

r

]
U(r). (14)

Evidently this equation is nearly identical to that of the non-Hermitian and PT -symmetric
radial Schrödinger–Coulombic one, of course with the irrational angular momentum quantum
number �′ = −1/2 + γ + ω̃/2 > 0. Its solution can therefore be inferred from the known
non-relativisticPT -symmetric Coulomb problem (cf, e.g., Mustafa and Znojil [11] and Znojil
and Levai [15] for more details on this problem). That is

[E2 − m2]1/2ñ = [mA2 + A1E] ñ = nr + �′ + 1 > 0. (15)

This in turn implies

E

m
= A1A2

ñ2 − A2
1

±
[(

A1A2

ñ2 − A2
1

)2

+

(
ñ2 + A2

2

)
ñ2 − A2

1

]1/2

(16)

with ñ = n− j − 1/2 + γ , where nr = n− � + 1 is the radial quantum number, n the principal
quantum number and � = j + ω̃/2 is the angular momentum quantum number.

In connection with the result in equation (16), several special cases should be interesting
for they reveal the consequences of the above complexified non-Hermitian Dirac Hamiltonian:

• Case 1. For A2 = 0, the complexified Coulomb energy V (r) = −iA1/r = −iZα/r

(α ≈ 1/137) represents, say, the interaction energy of a point nucleus with an imaginary
charge iZe and a particle of charge −e. In this case, γ =

√
(j + 1/2)2 + (Zα)2 and

E

m
= +

[
1 − (Zα)2

(n − j − 1/2 + γ )2

]−1/2

(17)
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Figure 1. The ratio E/m of (18) at different vales of Zα for the states (from top to bottom) with
the principal quantum number n = 1, 2, 3, . . . , 10, 20, 30, 40 and 50.

where the negative sign is excluded because negative energies would not fulfil
equation (15). For a vanishing potential (Z = 0) the energy eigenvalue is m. Obviously,
unlike the ordinary (Hermitian) Sommerfeld fine structure formula, equation (17) suggests
that a continuous increase of the coupling strength Zα from zero pushes up the electron
states into the positive energy continuum, avoiding thereby the energy gap. Nevertheless,
for states with n = j + 1/2 one obtains

E

m
= +

√
1 +

(Zα)2

n2
. (18)

The ratio E/m in (18) is plotted in figure 1 for n = 1, 2, 3, . . . , 10, 20, . . . , 50. It is
evident that as n → ∞ the ratio E/m → 1.

• Case 2. For A1 = 0, γ =
√

K2 − A2
2 and equation (16) reads

E

m
= ±

[
1 +

A2
2

(n − j − 1/2 + γ )2

]1/2

. (19)

In this case both signs are admissible and thus two branches of solutions exist,but not in the
energy gap. The solutions of positive and negative energies exhibit identical behaviour,
which reflects the fact that scalar interactions do not distinguish between positive and
negative charges. Moreover, states with negative energies are pulled down to dive into
the negative energy continuum, while states with positive energies are pushed up to dive
into the positive energy continuum. Yet the flown away states phenomenon re-emerges
and for A2 = |K| states with n = j + 1/2 fly away and disappear from the spectrum. Of
course, one should worry about the critical values of the coupling (i.e., A2,crit = |K|),
where imaginary energies would be manifested.

• Case 3. For A1 = A2 = A, γ = |K| and

E

m
= A2

ñ2 − A2
± ñ2

ñ2 − A2
. (20)
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Figure 2. Part of the spectrum E/m of (21) at different values of the coupling A and for states
with n = 1, 2, 3, . . . , 6.

Obviously, the negative sign must be discarded for it implies E = −m and thus contradicts
equation (15). Hence, equation (20) reduces to

E

m
= 1 +

2A2

n2 − A2
. (21)

Part of this spectrum (i.e., for the principal quantum number n = 1, 2, 3, . . . , 6) is plotted
in figure 2. As the coupling strength A increases from zero to n, the electron states
are pushed up from E = m into the positive energy continuum avoiding the energy gap
between −m and m. However, all states with n = A fly away and disappear from the
spectrum. Nevertheless, as A increases from n and at A → ∞ all energy states cluster
just below E = −m.

• Case 4. If we replace (γ 2 + ω̃γ ) with �̃(�̃+1), where �̃ = −1/2+
√

(� + 1/2)2 + A2
1 − A2

2,
equation (14) reduces to Klein–Gordon [23] with complex Coulomb-like Lorentz scalar
and Lorentz vector potentials, S(r) = −iA2/r and V (r) = −iA1/r , respectively. That is

[E2 − m2]U(r) =
[
−∂2

r +
�̃(�̃ + 1)

r2
− 2i(mA2 + A1E)

r

]
U(r) (22)

which when compared with the non-HermitianPT -symmetric, the Schrödinger–Coulomb
equation implies that

[E2 − m2]1/2Ñ = [mA2 + A1E] Ñ = nr + �̃ + 1 > 0 (23)

and

E

m
= A1A2

Ñ2 − A2
1

±
[(

A1A2

Ñ2 − A2
1

)2

+

(
Ñ2 + A2

2

)
Ñ2 − A2

1

]1/2

. (24)

This, in turn, following similar analysis as above, yields

E

m
= +

[
1 − A2

1

Ñ2

]−1/2

Ñ = n − � − 1/2 +
√

(� + 1/2)2 + A2
1 (25)
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for A2 = 0 and A1 �= 0,

E

m
= ±

[
1 +

A2
2

Ñ2

]1/2

Ñ = n − � − 1/2 +
√

(� + 1/2)2 − A2
2 (26)

for A1 = 0 and A2 �= 0, and

E

m
= +

[
1 +

2A2

n2 − A2

]
Ñ = n (27)

for A1 = A2 = A. Clearly, spin-0 states follow similar scenarios as those for spin-1/2
states (i.e., e.g., flown away states, pushed up into the positive continuum and/or pulled
down into the negative continuum etc).

3. Summary

To summarize, we have used a similarity transformation to extract exact energies for the Dirac
particle in the generalized complex Coulomb potential. Within such non-Hermitian settings
we have also obtained exact energies for the Klein–Gordon particle.
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